

Human MMP-9 ELISA Kit

Product description

Human MMP-9 ELISA Kit is an in vitro enzyme-linked immunosorbent assay kit used for the quantitative determination of Human Matrix Metalloproteinase-9 (MMP-9) in serum, plasma, and cell culture supernatants. Specific antibodies against Human MMP-9 are pre-coated on high-affinity enzyme plates. Standard samples and test samples are added to the wells of the enzyme plate and, after incubation, the MMP-9 present in the samples binds to the solid-phase antibody. After washing to remove unbound substances, a detection antibody is added and incubated to bind. Following another wash, an enzyme conjugate (Streptavidin-HRP) is added and incubated to bind. After washing, a TMB chromogenic substrate is added for color development in the absence of light. The intensity of the color reaction is proportional to the concentration of MMP-9 in the sample. The reaction is terminated by adding a stop solution, and the absorbance is measured at 450 nm wavelength (with a reference wavelength of 570 - 630 nm).

MMP-9, also known as Gelatinase B, 92 kDa type IV collagenase, 92 kDa gelatinase, or type V collagenase, is a glycosylated proenzyme. MMP-9 degrades components of the extracellular matrix (ECM) with high activity against denatured collagen (gelatin). It cleaves natural collagens of types III, IV, V, and XI, as well as elastin, nidogen-1, and vitronectin. MMP-9 can also cleave various chemokines and growth factors (such as IL-1 β , CXCL 8/IL-8, CXCL 7, CXCL 4, CXCL 1, latent transforming growth factor- β , membrane-bound tumor necrosis factor- α , vascular endothelial growth factor, and basic fibroblast growth factor), amyloid precursor protein, substance P, and myelin basic protein. This activity can either increase or decrease the biological activity of soluble factors and can also release them from their association with the ECM.

Specifications

Item Number	P162025S / P162025E
Specification	48 T / 96 T
Detection Range	31.25-2000 pg/mL
Detection Method	Sandwich ELISA
Detection Species	Human
Detection Time	5 hours
Sensitivity	7.44 pg/mL
Dilution Linearity	76.7 -105.9 %
Recovery Rate	76.1 - 119.2 %
Intra-assay Variability	4.6 %
Inter-assay Variability	5.1 %

Components

Component	Component Name	Storage	P162025S	P162025E
Number		Temperature		
P162025-A	Plate	2~8°C	48 T	96 T
P162025-B	Standard	2~8°C	1 tube	2 tubes
P162025-C	Detection Antibody	2~8°C	1 tube	2 tubes
P162025-D	Enzyme Conjugate	2~8°C (Avoid Light)	170 μL	350 μL
P162025-E	5×Dilution Buffer	2~8°C	12 mL	25 mL
P162025-F	20×Wash Buffer	2~8°C	25 mL	50 mL
P162025-G	Substrate Solution	2~8°C (Avoid Light)	8 mL	15 mL
P162025-H	Stop Solution	Room Temperature	5 mL	10 mL
P162025-I	Plate Sealers	Room Temperature	3 pieces	5 pieces

Storage

The assay kit can be stored at $2\sim8$ °C. Alternatively, the reagents can be stored according to the storage conditions provided in the component information to avoid contamination and repeated freeze-thaw cycles. Diluted working solutions should be used immediately and not reused. The shelf life is 1 year.

Table 1. Reagent Storage Table After Initial Use

Material Name	Storage Conditions	
	Unused strips can be returned to the aluminum foil bag, tightly sealed, and	
Plate	stored at 2~8°C to avoid moisture absorption.	
Standard		
Detection antibody	Use within 48 hours after dissolution, store at 2~8°C to avoid contamination.	
Enzyme conjugate	Use within 48 hours after dilution, store at 2~8°C to avoid contamination.	
5×Dilution Buffer		
20×Wash Buffer	Store at 2~8°C for 1 month, avoiding contamination.	
Substrate solution	Store at 2~8°C for 1 month, avoiding light exposure.	
Stop solution		
Plate sealing film	Can be stored at room temperature.	

Instructions

- 1. For quantitative detection of Human IP-10 content in serum, plasma, and cell culture supernatant.
- 2. Please read the instruction manual carefully before using this product.

Notes

- 1. This product is for research use only.
- 2. For your safety and health, wear laboratory clothing and disposable gloves when operating.
- 3. The reagent kit should be used within the shelf life. It is prohibited to mix reagents from different batches.
- 4. This product can only be used to detect target antigens and samples as indicated in the instruction manual. Other applications require validation by the user, and the reliability and accuracy of the use should be evaluated based on the results.
- 5. Do not mix or substitute reagents or materials from different batches or suppliers of other kits.

Common Technical Tips

- 1. When the sample OD value is higher than the S1 OD value, further dilution should be performed in an appropriate sample diluent.
- 2. Avoid generating foam during mixing.
- 3. Replace tips promptly when adding standard samples, samples, and others to avoid cross-contamination.
- 4. Ensure proper sealing of the ELISA plate or complete coverage with plate seal film during incubation.
- 5. Please completely remove all solutions and buffers during the washing steps.
- 6. Before dissolving the standard samples, do not invert the standard sample tube randomly. After inverting the standard sample tube, thoroughly mix it up and down after adding the buffer, then centrifuge at low speed.
- 7. During the experiment, place the reagents according to the instructions.
- 8. Discard buffer solutions promptly after completing the experiment; use once and discard.
- 9. Different products have different components in the reagent kit and cannot be used interchangeably.

Other Preparation Materials

- 1. ELISA reader, measure absorbance at 450 nm (reference wavelength 630 nm).
- 2. Incubator, automated microplate washer.
- 3. Pipettes, 1 μ L to 1 mL pipettes with corresponding tips.
- 4. 100 mL and 1 L graduated cylinders.
- 5. Standard or sample dilution tubes.
- 6. Blotting paper.
- 7. Distilled water or deionized water.

8. Computer and analysis software.

Pre-Experiment Preparation

1. Sample Collection and Processing

- 1) Cell Culture Supernatant: Centrifuge at $1,000 \times g$ for 10 minutes to remove precipitates, then test immediately or aliquot and store at -20°C or below.
- 2) Serum Samples: Collect serum in tubes free of pyrogens and endotoxins. After clotting for 30 minutes, centrifuge at $1,000 \times g$ for 10 minutes. Test immediately after aspirating serum samples or aliquot and store at -20° C or below.
- 3) Plasma Samples:Collect plasma samples using EDTA, sodium citrate, or heparin anticoagulants. Centrifuge at $1,000 \times g$ for 30 minutes to collect samples. Test immediately or aliquot and store at -20°C or below.

This assay kit may be applicable to other biological samples. Serum, plasma, and cell culture supernatant have been validated.

[Note]Visible precipitates in the sample must be removed before testing. Do not use samples with severe hemolysis or high lipid content. Samples should be aliquoted and stored at -20°C to prevent loss of MMP-9 activity. If testing within 24 hours, samples can be stored at 2~8°C, avoiding repeated freeze-thaw cycles. Before testing, frozen samples should be slowly brought to room temperature (25°C \pm 3°C) and gently mixed.

If sample dilution is required, use the specified sample dilution buffer for dilution.

Recommended dilutions for normal serum/plasma samples (for reference only): 1:4999 dilution with sample diluent; for cell culture supernatant (for reference only): undiluted.

Due to variations in the content of target proteins in samples, the dilution ratio for each sample should be determined based on preliminary results or actual conditions..

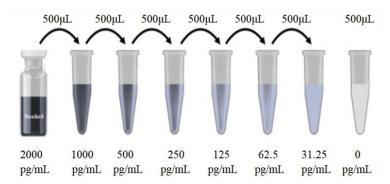
2. Preparation of the ELISA Plate

The ELISA plate should be brought to room temperature before use. Unused strips should be promptly sealed in a desiccant and stored at 2~8°C, with each sample requiring multiple wells for experimentation.

3. Reagent Preparation

All reagent components and samples need to be brought to room temperature before use. To ensure the accuracy of the experiment, this should be done within 15 minutes before use.

1) $1 \times$ Wash Solution Preparation: Equilibrate concentrated solution to room temperature, fully dissolve without crystallization. Mix well, take 25 mL of 20 \times wash solution and dilute to 500 mL with distilled water; specific preparation volumes can be adjusted based on the amount used each time.



- 2) 1x Dilution Solution Preparation: Equilibrate the concentrated solution to room temperature, ensuring complete dissolution without crystallization. Mix well, take 10 mL of 5x dilution solution and add it to distilled water, then bring the volume up to 50 mL; the specific volume for preparation can be adjusted based on the amount needed for each use. The 1x dilution solution is used to dilute standard substances, test samples, detect antibodies, and enzyme conjugates.
- 3) Detection Antibody Preparation: Centrifuge at 10000 rpm for 20 seconds before use, then dilute with antibody diluent at a ratio of 1:100 for working concentration, for example: take 60 $\,\mu$ L and dilute to 6mL with antibody diluent; specific preparation volumes can be adjusted based on the amount used each time, mix thoroughly.
- 4) Enzyme Conjugate Preparation: Centrifuge at 10000 rpm for 20 seconds before use, then dilute with enzyme diluent at a ratio of 1:40 for working concentration, for example, take 150 $\,\mu$ L and dilute to 6 mL with antibody/enzyme diluent; specific preparation volumes can be adjusted based on the amount used each time, mix thoroughly.
- 5) Preparation of Standard Curve: Prepare 7 sterile 1.5mL centrifuge tubes and label them according to the standard concentrations. Preparation of S1: Dissolve one vial of standard lyophilized powder in the amount indicated by the label with sample diluent, mix thoroughly, labeled as 2000 pg/mL. Add $500\mu\text{L}$ of $1\times$ sample diluent to each centrifuge tube, take $500\mu\text{L}$ of S1 and mix thoroughly into the first centrifuge tube, then take $500\mu\text{L}$ to the next labeled concentration tube and mix thoroughly, creating a 2-fold dilution standard curve, starting with the highest concentration labeled as 500 pg/mL and the lowest concentration as 31.25 pg/mL, according to the following preparation method. A standard curve should be prepared for each experiment, and standard curves from different kits or different times should not be mixed. For sample testing, 100μ L of each standard is required per well; ensure the preparation volume is greater than the required volume to avoid insufficient usage.

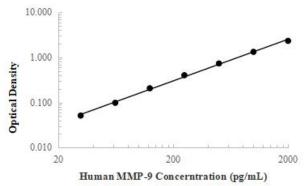
Table 2. Preparation of MMP-9 Standard Curve (31.25-2000 pg/mL)

Standard Curve	Diluent (μL)	Volume of Standard Added (µL)	Final Concentration of Standard (pg/mL)
S1	As labeled	1	2000
S2	500	500	1000
S3	500	500	500
S4	500	500	250
S5	500	500	125
S6	500	500	62.5
S7	500	500	31.25
Blank	500	0	0

Operating Instructions

Before use, all reagents and samples need to be equilibrated to room temperature. It is strongly recommended to perform duplicate measurements for all standards and test samples.

- 1. Reagent Preparation: Prepare various test reagents, diluted standards, and test samples.
- 2. ELISA Plate Determination: Calculate the number of ELISA plate wells required for test samples and standards. Remove the ELISA plate strips from the aluminum foil bag, return the remaining strips to the bag, and seal the bag for storage at low temperature.
- 3. Soak the ELISA plate: Soak the ELISA plate in $1 \times$ wash solution (350 μ L/well), discard the liquid from the wells after 30 seconds, and tap dry the ELISA plate. The liquid volume affects the test results significantly; ensure no residual wash solution remains after the final tapping.
- 4. Sample Incubation: Add various gradient standards and diluted test samples, 100 $\,\mu$ L/well, ensuring spot sampling is completed within 15 minutes. Incubate at room temperature for 2 hours.
- 5. Plate Washing: Discard the liquid from the wells, wash the plate 5 times with $1 \times$ wash solution (350 μ L/well), and tap dry the ELISA plate.
- 6. Detection Antibody Incubation: Add the detection antibody prepared to working concentration to the ELISA plate, 100 $\,\mu$ L/well, and incubate at room temperature for 2 hours.
- 7. Plate Washing: Discard the liquid from the wells, wash the plate 5 times with $1 \times$ wash solution (350 μ L/well), and tap dry the ELISA plate.
- 8. Enzyme Conjugate Incubation: Add the enzyme conjugate prepared to working concentration to the ELISA plate, 100 $\,\mu$ L/well, and incubate at room temperature for 30 minutes.
- 9. Plate Washing: Discard the liquid from the wells, wash the plate 5 times with $1\times$ wash solution (350 μ L/well), and tap dry the ELISA plate.
- 10. Color Development: Before use, equilibrate the substrate solution to room temperature for 10 minutes. Add the substrate solution to the ELISA plate, 100 $\,\mu$ L/well, and incubate at room temperature in the dark for 20 minutes.
- 11. Stop Solution: Add 50 $\,\mu$ L/well of stop solution to the ELISA plate. At this point, the color changes from blue to yellow. Gently shake the ELISA plate to ensure uniform color development.
- 12. Reading: Read the absorbance values at 450 nm/630 nm within 10 minutes.


Standard Curve Establishment

Calculate the average OD values for duplicate wells of standards and samples, and subtract the average OD value of blank wells to obtain the calibrated OD value. Plot the standard curve with the logarithm of standard concentrations as the x-axis and the logarithm of calibrated OD values as the y-axis. Various plotting and statistical software can be used to assist in drawing the standard curve and calculating the concentration of unknown samples. The four-parameter fitting method often yields better fitting results, while other methods such as linear fitting may also yield good fitting results, depending on the specific experimental data.

Experimental Data

1. Standard Curve Data

Data were fitted to generate a standard curve graph, which was used for the analysis of experimental data.

standard curve graph

Concentration (pg/mL)	Absorbance		Mean Value	Calibration Value
2000	2.521	2.362	2.441	2.335
1000	1.451	1.421	1.436	1.330
500	0.845	0.834	0.840	0.733
250	0.518	0.500	0.509	0.403
125	0.313	0.312	0.313	0.206
62.5	0.205	0.203	0.204	0.098
31.25	0.158	0.156	0.157	0.051
0	0.108	0.105	0.106	/

2. Sensitivity Detection

The minimum detection limit of MMP-9 is 7.44 pg/mL, calculated by averaging the zero well OD values from 20 repeated measurements and determining their standard deviation.

3. Precision Detection

Intra-assay Precision

Three samples of known concentrations were assayed 20 times on the same ELISA plate to evaluate Inter-assay Precision

Three samples of known concentrations were assayed 36 times on different ELISA plates to evaluate

Project	Intra-assay Precision			Inter-assay	/ Precision	
	1	2	3	1	2	3
Sample	20	20	20	30	30	30
Mean Value	61.3	234.7	966.3	59.9	235.9	979.6
Standard Deviation	4.09	6.91	39.87	5.06	7.71	35.61
Coefficient of Variation (%)	6.7	2.9	4.1	8.4	3.3	3.6

4. Recovery Rate Detection

The recovery of MMP-9 was determined by adding MMP-9 at different levels to the samples. The recovery rates are as follows:

Sample Types	Average Recovery Rate (%)	Range (%)
Serum	101.8	90.9-109.3
Plasma	97.2	85.0-105.0
Cell culture supernatant	94.1	76.1-119.2

5. Dilution Linearity Test

Serum Dilution Ratio	Mean Expected Value (%)	Range (%)
1:02	99.7	96.3-105.9
1:04	96.1	93.1-102.0
1:08	92.7	85.1-98.8
1:16	90.5	85.7-93.5

Plasma Dilution Ratio	Mean Expected Value (%)	Range (%)
1:02	100.7	98.2-102.1
1:04	99.7	97.7-101.5
1:08	99.5	97.5-101.7
1:16	101.0	99.4-102.2

Product Manual, Version 1.0

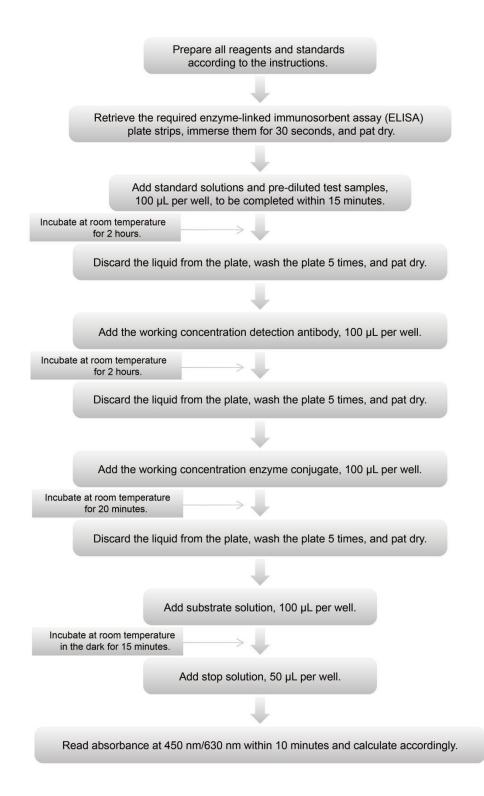
Cell Culture Supernatant Dilution Ratio	Mean Expected Value (%)	Range (%)
1:02	95.5	84.2-101.6
1:04	93.9	84.2-103.0
1:08	94.6	83.1-104.6
1:16	88.3	76.7-95.6

6. Sample Values

Using this assay kit, samples from several healthy volunteers were tested. The medication history of the volunteers is unknown.

Sample Types	Sample Number	Mean Value (pg/mL)	Sample Value (pg/mL)
Serum	10	468.2	49.0-1148.0
Cell Culture Supernatant	10	n.d.	n.d.
EDTA plasma	10	420.5	38.4-922.3
Sodium citrate plasma	10	974.6	73.6-4302.8
Cell culture supernatant	10	n.d.	n.d.

n.d. Refers to sample concentrations below the detection range of 31.25 pg/mL $\,$


7. Specificity Assay

This assay kit recognizes both native and recombinant MMP-9, with no observed significant cross-reactivity or interference effects.

Recombinant human:		Recombinant mouse:
ADAM8	MMP-8	ADAM9
ADAM10	MMP-10	ADAM10
ADAM15	MMP-12 (catalytic domain)	ADAM15
Lipocalin-2/NGAL	MMP-13	Lipocalin-2/NGAL
MMP-1	TACE (ADAM17)	MMP-2
MMP-2	TIMP-2	MMP-3
MMP-3	TIMP-3	MMP-9
MMP-7	TIMP-4	TIMP-1

Detection Schematic

Frequently Asked Questions

Issues	Causes	Solution
Poor standard curve	Inaccurate pipetting volumes	Check the pipette, calibrate it
	Inappropriate dilution methods	regularly, handle it carefully,
		tightly cap the tip while mixing
		thoroughly, and minimize foam
		formation.
Low color intensity	Insufficient incubation time	Allow sufficient incubation time,
		and replace samples and
		reconstituted standards
		overnight.
	Inadequate pipetting volumes	Calibrate pipettes and
	or improper dilution	standardize operations.
High coefficient of variation (CV)	Improper washing of the ELISA plate	Use the correct washing
		procedure; if using a plate washer,
		check all ports for blockages.
	Contaminated washing solution	Prepare fresh washing solution.
Low sensitivity	Improper storage of the assay	Store according to the product
	kit	component table.